Abi induces ectopic sensory organ formation by stimulating EGFR signaling

نویسندگان

  • Raiko Stephan
  • Astrid Grevelhörster
  • Stefanie Wenderdel
  • Christian Klämbt
  • Sven Bogdan
چکیده

One of the central regulators coupling tyrosine phosphorylation with cytoskeletal dynamics is the Abelson interactor (Abi). Its activity regulates WASP-/WAVE mediated F-actin formation and in addition modulates the activity of the Abelson tyrosine kinase (Abl). We have recently shown that the Drosophila Abi is capable of promoting bristle development in a wasp dependent fashion. Here, we report that Drosophila Abi induces sensory organ development by modulating EGFR signaling. Expression of a membrane-tethered activated Abi protein (Abi(Myr)) leads to an increase in MAPK activity. Additionally, suppression of EGFR activity inhibits the induction of extra-sensory organs by Abi(Myr), whereas co-expression of activated Abi(Myr) and EGFR dramatically enhances the neurogenic phenotype. In agreement with this observation Abi is able to associate with the EGFR in a common complex. Furthermore, Abi binds the Abl tyrosine kinase. A block of Abl kinase-activity reduces Abi protein stability and strongly abrogates ectopic sensory organ formation induced by Abi(Myr). Concomitantly, we noted changes in tyrosine phosphorylation supporting previous reports that Abi protein stability is linked to tyrosine phosphorylation mediated by Abl.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ectopic scute induces Drosophila ommatidia development without R8 founder photoreceptors.

During development of the Drosophila peripheral nervous system, different proneural genes encoding basic helix-loop-helix transcription factors are required for different sensory organs to form. atonal (ato) is the proneural gene required for chordotonal organs and R8 photoreceptors, whereas the achaete-scute complex contains proneural genes for external sensory organs such as the macrochaetae,...

متن کامل

The Drosophila IgC2 domain protein Friend-of-Echinoid, a paralogue of Echinoid, limits the number of sensory organ precursors in the wing disc and interacts with the Notch signaling pathway.

The Notch signaling pathway is critical in cell fate specification throughout development. In the developing wing disc, single sensory organ precursors (SOPs) are selected from proneural clusters via a process of lateral inhibition mediated by the Notch signaling pathway. The epidermal growth factor receptor (EGFR) pathway has also been implicated in SOP formation. Here, we describe the Drosoph...

متن کامل

Negative Regulation of EGFR/MAPK Pathway by Pumilio in Drosophila melanogaster

In Drosophila melanogaster, specification of wing vein cells and sensory organ precursor (SOP) cells, which later give rise to a bristle, requires EGFR signaling. Here, we show that Pumilio (Pum), an RNA-binding translational repressor, negatively regulates EGFR signaling in wing vein and bristle development. We observed that loss of Pum function yielded extra wing veins and additional bristles...

متن کامل

Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling.

The auditory sensory epithelium (organ of Corti), where sound waves are converted to electrical signals, comprises a highly ordered array of sensory receptor (hair) cells and nonsensory supporting cells. Here, we report that Sprouty2, which encodes a negative regulator of signaling via receptor tyrosine kinases, is required for normal hearing in mice, and that lack of SPRY2 results in dramatic ...

متن کامل

LIN-39 and the EGFR/RAS/MAPK pathway regulate C. elegans vulval morphogenesis via the VAB-23 zinc finger protein.

Morphogenesis represents a phase of development during which cell fates are executed. The conserved hox genes are key cell fate determinants during metazoan development, but their role in controlling organ morphogenesis is less understood. Here, we show that the C. elegans hox gene lin-39 regulates epidermal morphogenesis via its novel target, the essential zinc finger protein VAB-23. During th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mechanisms of Development

دوره 125  شماره 

صفحات  -

تاریخ انتشار 2008